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ABSTRACT 

This is a program report which describes the formulation and employment of a com- 

puter code designed to eimulate the directional solidification of lead-rich Pb-Sn alloys in 

the form of an ingot with a uniform and circular cross-section. In thia program report, 

the formulation is for steady-state solidification in which convection in the all-liquid zone 

is ignored. Particular attention has been given to designing a code to simulate the effect 

of a subtle variation of temperature in the radial direction. This is important because a 

very small temperature difference between the center and the surface of the ingot (e.g., 

less than 0.5 O C )  is enough to cause substantial convection within the mushy-eone when 

the solidification rate is approximately to cm-. 8-l. 
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LIST OF SYMBOLS 

Subscript 

r : r-direction. 

I : 1;-direction. 

L : interdendritic liquid. 

s :  solid 

E : eutectic. 

i,j : mesh point ( i , j ) .  

o : reference. 

1, a : indices for metal components 1 and 2 in a binary alloy, respectively. 

1, a, ..., Q : indices for nine nodes. 

Super S cript 

(m) : iteration counter. 

: solid/liquid interface. 

0 t hers 

-: average. 

: vector. - 
Symbols 

a, b : geometry of solid/liquid zone (dimensionless). 

ul, SI, t i ,  Ci : constants in equations. 

CL, Cs, C,, Ci : compositions in weight percent Sn of the interdendritic liquid, final solid, eu- 

tectic, and the solid at the solid/liquid interface, respectively. 
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CL~, C L ~  : concentrations of components 1 and 2 in the interdendritic liquid, respectively 

(wt. pct.). 

E : average composition of the partially solidified solid. 

Csl, C S ~  : concentrations of components 1 and 2 in the solid phase, respectively (wt. pct.). 

= G p s  + CQL. c7; : average solute concentration per unit volume defined by 

e(") : residual in the (n)th iteration step. 

f : a function. 

+ g : gravity vector. 

gt, gs, gE : volume fractions of the liquid, solid and eutectic, respectively. 

gr, gr : gravity components in the r- and e-directions, respectively (cm - s-'). 

H I ,  H, : enthalpy densities of the interdendritic liquid and solid, respectively (Joule 

9 - 9  

h l ,  h2,. . . , hs : distance to a node from a reference node in the r-direction on the global r-e 

plane. 

K : permeability (cm2). 

kl, k2,. . . , lcg : distance to a node from a reference node in the direction on the global r-8 

plane. 

L : entalpy difference defined by HI - a,. 
P : pressure (dyne - cm-p). 

Po : pressure at the reference point, i.e. the intersection of the liquidus isotherm 

and the centerline of the cylindrical ingot. 

P : modified preasure defined by f) P - Po - pL0 gz (z - zto). 
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81, Q b  : enthalpies of the interdendritic liquid and solid, respectively (Joule g-I). 

R : radius of the cylindrical ingot (a). 

r, z : distances in the r- and e-directions in a moving coordinate system, respectively. 

(rj,zj) : coordinate of node i in the r-8 global plane. 

(rj,j,zj,i) : coordinate of mesh point (ij). 

#,z' : r and z in the stationary coordinate system, respectively. 

T : temperature ("C). 

t : time (a). 

Ti' : solidification velocity (cm . 8-l) .  

ut, ux : solidification velocity components in the r- is-directions, respectively (cm es-l). 

7: velocity vector of the interdendritic liquid. 

Vr, Va : interdendritic liquid velocity components in the r- and z-directions, respectively 

(cm - 8-l). 

3 : velocity of the moving coordinate system (cm s-l). 

Wr,  wx : velocity components of the moving coordinate system (cm - s-l). 

ZL,Z& : 8 coordinates of the liquidus and eutectic isotherms, respectively. 

ZL" : e coordinate of the reference point, i.e. the intersection of the liquidus isotherm 

and the centerline of the cylindrical ingot. 

a1, a2, . . . , ag : distance to a node from a reference node in the r-direction on the local a - /3 

plane. 

ar, pr , a*, PI : grouped variables. 

/31, p 2 , .  . . ,@g : distance to a node from a reference node in the z-direction on the local a - 
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plane. 

n : thermal conductivity (watt - cm-l . OC-’). 

K L ~ ,  I C L ~  : thermal conductivities of the pure liquid metals 1 and 2, respectively (watt - 

1- cm-1 .OC” 

X S ~ , I G ~ ~  : thermal conductivities of the pure solid metals 1 and 2, respectively (watt 

1- cm-1 . oc-1 

p : viscosity of the interdendritic liquid (poise). 

p : average density defined by p E psgs + pLgL. 

p ~ , p s  : densities of the interdendritic liquid and solid, respectively (g - ~ r n - ~ ) .  

p~~ : density of the liquid at the liquidus isotherm (g - ~ r n - ~ ) .  

P S E ,  PLE : densities of the liquid and solid of the eutectic composition, respectively (g a 

~ m - ~ ) .  
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1 INTRODUCTION 

This report describes the numerical formulation of a model for the vertical mlidifica- 
I 

tion of a binary alloy in a cylindrical mold. This is a preliminary model in that wcalled 

"steady-etate" solidification is tested. In the hal version, the code will be able to treat 

a mushy zone that changes with time. The major goal is the estimation of macrosegrega- 

tion in the cast structure of small ingots, which solidify slowly (less than 0.01 cm 8-l) .  

Calculations are performed for the solid/liquid  one formed between the liquid and solid 

regions. Convection in liquid region is neglected, and the flow of interdendritic liquid in 

the solid/liquid eone is modelled as flow through a porous medium. This flow is induced 

by gravity and solidification contractions (or expansions). 

The temperature field in the eone affects physical properties and the fraction of inter- 

dendritic liquid. In order to solve for temperature, the energy equation takes account of 

the latent heat of freezing during solidification. The flow of the interdendritic liquid sat- 

isfies the constraint of the heat flow for steady-state solidification, and then the resulting 

macrosegregation in the radial direction of cylindrical ingot is computed by averaging the 

concentrations of primary and eutectic solids. 

For a predefined computation zone a generalized finite difference method is employed 

to obtain a numerical solution of the equations. Nonplanar boundaries corresponding to 

the top and bottom of the solid/liquid zone are considered so that the effect of a subtle 

radial temperature gradient on macrosegregation can be simulated. 

2 PROBLEM STATEMENT 

Fig. 1 shows an ingot of a binary alloy undergoing vertical solidification. Most of 
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the heat conduction is in the negative e-direction with a very emall radial component. 

Gravity is in the negative e-direction as shown, with no component in the radial direction. 

It assumed that dendritic freezing takes place within the mushy eone, which move 

upward with a constant velocity. The shape of the eutectic and liquidus isotherms can 

be flat, convex or concave. The concentrations of solute in the liquid and solid, CL and 

-cS, vary in the none. The convection of the interdendritic liquid driven by shrinkage 

and gravity, causes nonuniformities in the final average composition, Cs; this is known 

as macrosegregation. The effects of shrinkage were f h t  studied by Flemings and Nereo 

[l], and later both shrinkage and gravity were considered by several, including Maples and 

Pokier 121, in the analysis of macrosegregation. 

The mold shown in Fig. 1 is symmetric about the centerline, and in a steady-state so- 

lidification, the geometry of the mushy zone, the temperature distribution, and the velocity 

field, are all constant in time. Because steady-state solidification is considered, macroseg- 

regation is absent in the e-direction, and macrosegregation in terms of the composition, 

Cs, is only a function of radius across the ingot. Necessary data for computation are: 

1) liquid density as a function of temperature; 2) solid density; 3) the phase diagram for 

the binary alloy; 4) the pemeability for flow of interdendritic liquid; 6 )  velocity of the 

solid/liquid aone; and 6) the geometry of the eone. Temperatures and velocity fields are 

calculated and then macrosegregation is obtained from these results. 

3 CONSERVATION AND FLOW EQUATIONS 

The flow of interdendritic liquid through the mushy eone is governed by the principle 

of conservation of mass, solute, momentum and energy. The solution to the conservation 
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equations requires extensive computations; however, these equations can be simplified 

without losing accuracy for the macrosegregation problem of our interest. Fig. 2 illustrates 

the derintion of the simplified equations. The equation for the momentum conservation 

is replaced by D’Arcy’s Law, which describes the flow of the interdendritic liquid through 

a porous medium. Hubbert[S] proved that D’Arcy’s is valid when the flow velocity is 

low such that inertial forces are negligible compared with those arising from vixosity. 

A combination of this equation with mass conservation results in the pressure equation. 

Other combinations of the energy and solute conservations with the mass comervation 

lead to a simplified energy equation and the solute redistribution equation, respectively. 

This formulation is effective in reducing the computational effort required for calcula- 

tion of macrosegregation. The variables to be computed are pressure ( P ) ,  velocities in the 

r- and 8-directions (V,., Vz), volume fraction liquid (gL), and the temperature (2’). Starting 

from a initial guess of these values, the variables are updated as indicated in Fig. 2. The 

curved arrows pointing to the equations indicate the order of the updating process. When 

the computed pressure is sufficientlt accurate, the iteration is terminated. The derivation 

of the equations enclosed by circles in Fig. 2 are described in this section. 

Following Flemings and Nereo [l], the assumptions used in deriving the equations are 

B U I I U U X ~ Z ~ ~  below: 

a) no movement of solid, 

b) no flux by diffusion in the liquid in the direction of the thermal gradient, 

c) constant solid density, 

d) no pore formation, and 
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e) no diffusion of solute in solid. 

3.1 Mass Comervation. 

By taking account of the convection of liquid, the ma88 coneenration is 

a P  - = -v * ( P L 9 J )  at 

where 

lJ = psgs + PLSL 

If poroaity ia not formed, we have 

gs + gt = 1 

and 

By inserting Eqs. (3.1.2) through (3.1.4) into Eq. (3.1.1), we obtain 

(3.1.5) 

3.2 Local Solute Rediatribntion. 

The local solute redistribution was first derived by Flemings and Nereo [l]. Some 

steps omitted in the derivation are resolved in the derivation shown below. 

Similar to  Q. (3.1.1) conservation of solute is 

(3.2.1) 

where 

G = C,psgs + CLPLgL 

4 
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, 

Expanding the right hand side of Eq. (3.2.1) we have 

and substitution of Eq. (3.1.1) gives 

The first derivative term on the right hand side of Eq. (3.2.4) is rewritten 

(3.2.3) 

(3.2.4) 

(3.2.5) 

by substituting Eq. (3.2.2) for and expanding into Beveral terms. By replacing the pLgL 

in the second term of the right hand side of this equation with (p-psgs) and rearranging, 

we obtain 

(3.2.6) 

Substitution of this expression into the first derivative term on the right hand side of Eq. 

(3.2.4) gives 

(3.2.7) BCL 
+ P L 9 L X  ' 

a7 BPSSS 
at at + CL- - CL- m s s  

-pLgL v * VCL = ps at 

Let's consider rewriting the first term in this equation. The average solid composition, 

G, is 
(3.2.8) 

where Cg is the solid concentration at the solid-liquid interface. According to Leibnitzs' 

rule, 

(3.2.9) 
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and according to Fick’s second law of diffusion, the change in Cz at a 6x4 location is 

expressed with 

(3.2.10) 

where Ds is the diffusion coefficient of the solute in the solid. If the diffusion of the solute 

in solid is neglected (Ds = 0), Eq. (3.2.9) becomes 

(3.2.1 1) 

Note that and gs are functions of time and space. With respect to a stationary 

coordinate, following relations are valid: 

G g s  a G g s  -= 
dt at ’ 

and 

dgs ags 
dt at - -=- 

Thus Eq. (3.2.11) is reduced to 

(3.2.12) 

(3.2.13) 

(3.2.14) 

Flemings and Nereo [l] presented this equation without showing the steps given above. By 

substituting Eqs. (3.2.9) and (3.2.14) into Eq. (3.2.13), we obtain 

(3.2.15) 

where k is the equilibrium partition ratio, defined by k = C;/C,. Equation (3.2.16) 

is known as the ”solute redistribution equation”, and it relates the dependency of the 

volume fraction liquid on the solute concentration and the velocity of the interdendritic 

liquid. The values of pa, ps and k are functions of temperature and hence of CL. 

6 



3.3 Preseure Equation. 

The flow of the interdendritic liquid is expressed with D'Arcy's Law; hence 

v = --(VP K - P L T )  P a  
(3.3.1) 

where p is the viscosity of the liquid and K is the permeability of the dendritic network. If 

the pressure is considered with reference to atmospheric pressure and the density of liquid 

at the liquidus isotherm, we define f' with 

then Eq. (3.3.1) can be rewritten 

1 J = -- [." - ( p t  - p L o ) 7  K 
PSL 

(3.3.2) 

(3.3.3) 

The two velocity components, Vr and V', in cylindrical coordinate system are given by: 

and 

1 P9L IC, [" - (PL - PS0)9z Vx = -- 

(3.3.4) 

(3.3.5) 

where Kr and Kz are the permeabilities in the r- and 1;-directions, respectively, and gr and 

gz are eero and -9, respectively, for vertical solidification. 

In cylindrical coordinates the left hand side of Eq. (3.1.6) is 

(3.3.6) 
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and substitution of Eqs. (3.3.4) and (3.3.5) into Eq. (3.3.6) leads to the pressure equation, 

which is 

where 

(3.3.7) 

It should be pointed out that Kr and Kz each vary within the solid/liquid mne according 

to the volume fraction of liquid and the dendrite arm spacings of the dendritic network 

141. 

3.4 Steady-state Solidification. 

Consider a stationary coordinate (r',z') and a moving coordinate system (r,z) with 

the velocity (wr, wz). Then a full derivative of a function f with respect to t is given by 

(3.4.1) 

For steady-state, the function value on a moving frame does not change with time. Thus 

we have 

(3.4.2) 
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For our application the origin moves such that tur = 0 and UI, = uz, where uz b the 

solidification velocity in the s-direction, then Qs. (3.2.15) and (3.3.7) are reduced to the 

following expressions: 

and 

(3.4.3) 

Equations (3.4.2) and (3.4.3) are the pressure equation and solute redistribution equation, 

respectively, for steady-state solidification. 

At r = 0, we evaluate (a,./r) (aP/ar)  with L’Hospital’s rule; therefore 

(3.4.4) 

3.6 Boundary Conditione. 

At the liquidus isotherm 

If the pressure at r = 0 and at the isotherm is represented with Po, then the pressure 

along the liquidus isotherm is 

P = Po + P L o g s ( ~  - ZLO) (3.6.1) 

where ga is the component of gravity in the s-direction and p~~ is the density of the 

interdendritic liquid where CL = Co. In terms of the modified pressure B, related to by 

Eq. (3.3.2), this condition becomes 

P = 0. 

9 
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At the eutectic isotherm 

Interdendritic liquid must flow to compensate for the shrinkage associated with the 

solidification of the eutectic liquid. Thus, 

V,=-u.( PSE - PLE ) ( - t a n s ) ,  
PLE 

and 

P S E  - PLE 

PLE 

(3.5.3) 

(3.5.4) 

where 0 is the angle between the tangent to the eutectic isotherm and the horizontal line. 

By combining Eqs. (3.3.5, (3.5.3) and (3.5.4), the boundary condition can be expressed in 

t e r n  of the pressure gradient at the eutectic isotherm 

the c enter f -0) 

(3.5.5) 

(3.5.6) 

Since the solid/liquid zone is axisymmetric, the radial component of velocity is Bern. 

v r  = 0. 

Substitution of this equation into Eq. (3.3.4) gives 

aP 
at 
- = 0. (3.5.7) 

At the outer wall (r=R) 

The outer wall blocks the movement of the interdendritic liquid in the r-direction. 

Thus 

v r  = 0 
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so in terms of modified pressure, 

aP - = o .  at (3.5.8) 

The boundary conditions are also shown in Figs 3(a) and 3(b). Temperatures at the 

eutectic and liquidus isotherms are TE and To, respectively, and the axial symmetry gives 

sero heat flux in the radial direction at the center, i.e. BT/Br = 0. 

3.6 Energy Equation. 

Let’s represent the enthalpy densities for the solid and the interdendrititic liquid with 

Qu and QI, respectively. The energy consemtion, taking account of heat conduction and 

convection, is 

( 3.6.1) a ~ ( q u  + QI) = V *(nVT)  - V(91v) 

where n is the thermal conductivity of the mixture of the solid and liquid. The first term 

on the r.h.s. of Eq. (3.6.1) is the energy transported due to conduction and the second 

due to the convection of the interdendritic liquid. The enthalpy densities are related to 

the enthalpy of the primary solid, IT,, and the enthalpy of the interdendritic liquid, El, 

through the equations, 

Qa = PsgsHu (3.6.2) 

(3.6.3) 

If we define the difference in the enthalpies, L, with 

L = H l - H ,  

11 
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. 

then Eq. (3.6.3) becomes 

Substituting Eqs. (3.6.2) and (3.6.5) into Eq. (3.6.1) and expanding t e r n ,  we obtain 

(3.6.6) 

where 7 is the average density given by Eq. (3.1.2), and inserting Eqs. (3.1.1) and (3.1.2) 

into &. (3.6.6) to eliminate V ( p L g L 7 )  terms, we obtain 

(3.6.7) 

For steady-state solidification and a moving coordinate system with velocity components 

= 0 and wz = uZ, we can write 

(3.6.8) 

where 

Equation (3.6.8) is obtained by replacing the t h e  derivative terms in Eq. (3.6.7) with 

space derivatives via Eq. (3.4.2) and by using the assumptions of a constant solid density 

and no porosity formation. The thermal conductivities in the r- and e-directions, nr and 

E,, are approximated with the following formulas: 

(3.6.9) 
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K Z  (1 - g L ) 4  + QLXL (3.6.10) 

where the thermal conductivities of the solid and the interdendritic liquid, I C ~  and KL, are 

obtained from the thermal data for the pure solids and liquids of the components of the 

binary alloy: 

CalK81 + c82K82 (3.6.11) &I fil 100 

and 

(3.6.12) C L ~ K L I  + CLaKLa 
1co K L  fi4 

3.7b kfacrosegregation. The locd average composition kt a casting after complete 

solidification is obtained by averaging the compositions of the primary and eutectic solids. 

Therefore 

(3.7.1) 

The volume fraction of solid at the eutectic isotherm is (1 - g ~ )  and replacing with 

Eq. (3.2.8) gives 

(3.7.2) 

For steady-state solidification CS is dependent on radius. Integration is performed from 

the liquidus to the eutectic isotherms in the 4;-direction at a constant radius. 

4 NUMERICAL METHODS 

In directional solidification processes, it is advantageous to effect vertical solidification 

with perfectly horizontal isotherms. With such a thermal field no macrosegregation acros 

the ingot or casting results, and there is also little or no macrosegregation along the 

direction of solidification. However, to maintain perfectly horizontal isotherms implies 
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no temperature gradients across the ingot or casting; this, of course, is impossible but is 

approximated in practice. 

The consequence of slightly curved isotherms is that there can be macrosegregation 

across the casting or ingot depending upon solidification rate, the alloy, and the extent 

of the concavity or convexity of the isotherms. At high solidification rates, e.g. ud > 

5 x lo-’ cm - s-l, a small curvature of the isotherms is expected to be insignificant, but 

at low solidification rates, e.g. IO-’ 5 uz 5 IO-‘ cm - rl, even slight curvatures can 

profoundly affect the flow of the interdendritic liquid and, thereby, cause macrosegregation. 

In the following we discuss first the numerical simulation of a rectangular mesh, which 

is appraximate for directional solidification (DS) with horisontal isotherms, and then we 

discuss a non-rectangular mesh for adaptation to DS slightly curved isotherms. 

The generation of a rectangular mesh is straightforward; however there are some 

difficulties in formulating finite difference approximations for boundary points. Fig. 4(a) 

shows a rectangular mesh with uniform spacings in the r- and e-directions as employed by 

Kou [5].  At the cuwed boundaries there are special cases which require carefully written 

finite difference approximations of the derivatives. Usually finite difference equations of 

the second order accuracy are mostly considered, and the truncation errors involved in 

the approximations are proportional to the square of the grid spacings. In order to retain 

accuracy, all points including the boundary points must be expressed with the formulas 

of at least the same order of the accuracy of the interior points. For irregular boundary 

points, complicated expressions are required and various formulas must be considered for 

different cases. As an example, the first derivative of the function normal to the boundary 
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for point A shown in Fig. 4(a) can be expressed with values at its five nearest points and 

the point itself to get the second order accuracy of the derivative. The expression must 

be dependent on the distances from boundary points to a internal point closest to point 

A in the r- and z-directions. It can be seen that point B must be considered in terms of 

the six points shown as circles in Fig. 4(a). This kind of treatment necessitates complex 

book-keeping. 

To overcome the problems of the mesh of Fig. 4(a), Ridder et al.[6] employed a grid 

design shown in Fig. 4b) .  Vertical lines of equal spacings in the r-direction are drawn 

and the horizontal lines are drawn beginning at the intersections of curved boundaries 

and the vertical lines, resulting in nonuniform grid spacinjp in the e-direction. Additional 

horizontal lines which do not cross the curved boundaries are also inserted if necessary. 

This configuration gives computational efficiency and eliminates the burden of complex 

book-keeping for the mesh points at the curved boundaries; however, it must be noted 

that spacings in the s-directions are dependent on the selection of vertical grid lines, and 

the grid spacings of consecutive mesh points may differ by as much as several order of 

magnitudes depending on the geometry of the computation domain. This can adversely 

affect the accuracy of the solution as well as the convergence properties of the difference 

method. 

4.1 Nonorthogonal Meah. 

A nonorthogonal mesh is shown in Fig. 5. Suppose that we want m intervals in the r- 

direction and n intervals in the %-direction; we can start with (n- 1) equally-spaced points 

at the center line, i.e., r=O. Arbitrary smooth cuvea are drawn toward the outer wall of the 
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cylinder from these points. Vertical lines equidistant in the rdirection are drawn. Let% 

number the mesh points in the computational domain with two indices, i and j; i equals 1 

for the points on the center line and (m + 1) for those at r=R, and j equals 1 for the points 

on the eutectic isothem and (n + 1) for those on the liquidus isotherm. The eutectic and 

liquidus isotherms are written as 

and 

where R is the radius of the cylinder. The coordinates of the point ( i , j )  are 

and 

where 

and 

(i- 1) 
ri,j = R- m 

j-1 j-1 
(bp)j = a(1- -) + b- n n 

Also the tangent to the curve is given by 

(4.1.1) 

(4.1.2) 

( 4.1.3) 

(4.1.4) 

(4.1.5) 

(4.1.6) 

(4.1.7) 

This simple scheme assures that the ratios of the adjacent grid spacings in the r- and 

s-directions are close to unity and the curves are smooth. This is beneficial to the proper 
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estimation of spatial derivatives, however, it is necessary to consider finite differece a p  

proximations that are different than coventional expressions, because the generated mesh 

is nonorthogonal. A detailed description of this approximation is given later. 

4.2 Generalized Pmite Difference Method. 

Conventional finite difference methods divide a computatation domain into rectangu- 

lar meshes by positioning mesh points along a curve parallel to either of the orthogonal 

axes, and approximate spatial derivatives with several function values along the curve. 

Consider the rectangular meshea of the uniform spacings in the r- and e-directions as 

shown in Fig. 6(a). Central difference approximations of the first and second derivatives 

of a function f at a mesh point (i,j) are represented with the following relations: 

and 

The derivatives are given in terms of the grid spacings and the function values at neighbor- 

ing eight points and the point itself. In matrix notation these equations may be rewritten, 

(4.2.1) 



where 

t o  

0 

(4.2.2) 

0 0 0 
0 0 0 

0 0 0 0 
0 0 0 

0.s 0 

0 0 

and 

(4.2.4) 

where column vectors (GD) and ( f ~ )  represent the global derivatives and nodal function 

values, respectively, and the (TR) a 5 x 9 transformation matrix which makes it possible 

to compute (GD) based on nodal function values. Examination of Eq. (4.2.1) shows that 

the shape of the matrix (TR) is dependent on Ar and Az. Suppose that the grid lines are 

not parallel to the axes of the coordinates. Then, all the zeros in 3. (4.2.1) are expected 

to changed to nonzeros. This indicates that (GD) is dependent on the location of the 

neighboring points. Instead of taking the center node as a reference, any of the other eight 

neghboring nodes can be selected as the reference and employ forward and/or backward 

differencing techniques in either of the directions. 

The dependency of the (TR) on the coordinates of the neighboring points and the 

selection of the reference node has been analysed by Kwok [7]. Each effect of the two factors 
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on the matrix (2'8) was obtained by considering a global coordinate and corresponding 

local coordinate and the transformation between the coordinate systems. A function f(r,z) 

defined in a region of a global r-z plane can be related to the simple local coordinates in the 

a-fl plane as shown in Fig. 7. The nine points in the local coordinates are numbered in an 

arbitrary order. The coordinate (ai,pi) in the local plane corresponds to the coordinate 

( t i , & )  in the global plane. Within the local curvilinear mesh, the function value for an 

arbitrary point can be approximated with the following second-order polynomial: 

From the equations for the nine nodal points, the coefficients in &. (4.2.5) are known 

and then the first and second derivatives with respect to a and fl  are given in berms of the 

coefficients and the function valuea, ( f ~ ) .  If the function in a global plane is appraximated 

with a second-order truncated Taylor series expansion, the derivatives in the plane are 

expressed in terms of the global coordinates of the nine points and the function values at 

these points, ( f ~ ) .  The matrix (TR) was obtained by combining the derivatives in the 

local and global planes. The relationship between (GD) and ( f ~ )  derived by Kwok [7] is, 

(GD) = ((W (m-l (DCI (fd (4.2.6) 

where 

(4.2.7) 

(4.2.8) 
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for the central, forward as well as backward differencing schemes for various cases are 

obtained simply by varying m. Other parameters are dependent on m. 

Node m 

1 

2 

1 Point 

Boundary 1 :  

L o c a t i o n  

I n t e r n a l  
A !  

3 
4 

Fig. 8 shows nodes located at the corners and the boundaries of the computation 

domain as well as inside the domain. A represents the internal nodes as shown with solid 

circles; B, C, D and E represent the nodes along the four sides forming the boundary. 

There are also four corner points, F, G, H and I shown with circles. This clasaification is 

essential to employ adequate finite difference approximations to the nodes enclosed in the 

computational domain. 

Dc 6 
0 0 

1 
0 1 :  
-1 I 0 

0 1 -1 

Tab le  I .  C o o r d i n a t e s  i n  t h e  4-6 p l a n e  c o r r e s p o n d i n g  
t o  s e l e c t e d  r e f e r e n c e  node.  

f H t a -1 
I I I 

-1 
1 
1 

-1 

Adequate difference &ernes are obtained by varying only m. For 3n interior point, 

a central difference formula is employed; but, for the nodes located along the boundaries 
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and at the cornera, a forward or backward differencing technique is used to retain the 

second-order accuracy of the derivative approximations. The proper selection of m for 

different casea and corresponding a and @ values dependent on m are listed in Table I. 

4.3 Iterative computation. 

Physical properties such a8 viscosity, permeability, the density of the solid, and the 

density of interdendritic liquid are temperature dependent. The composition of the inter- 

dendritic liquid is also related to temperature by the liquidus of the phase diagram. With 

temperature and volume fraction liquid in the computational domain specified, the coef- 

ficients and the r.h.s. of the pressure equation (Eq. (3.4.2)) can be estimated. Then the 

pressures in the domain are obtained, and the velocities, which depend upon the pressure 

distribution, are computed using D’Arcy’s Law. The volume fraction of liquid is updated 

to satisfy the local solute redistribution equation, and then the temperature is reestimated. 

The iteration steps are performed as follows: 

1. Start with a linear temperature profile in the e-direction and zero velocity. Solve for 

9L* 

2. Solve the pressure equation. 

3. Check whether the pressure is sufficiently accurate. If the solution is accurate enough, 

jump to step 7. 

4. Employ D’Arcy’s Law to calculate velocity. 

5. Recalculate gL using the local solute redistribution equation. 

6. Solve energy equation for temperature and then go back to step 2. 

7. Terminate the loop. 
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A detailed description of these steps is given in later subsections. 

4.4 Evaluation of CoeBcients m Preeme Equation. 

The values of or,, a=, Br and PI defined by Eq. (3.3.8) vary by several orders of 

magnitude in the computation domain. The derivatives of these functions are expressed 

in terms of their logarithms: 

and 

(4.4.1) 

(4.4.2) 

(4.4.3) 

(4.4.4) 

Finite difference approximations were applied to the logarithms of the respective functions. 

4.5 Solution of Presaure Equation. 

The first and second derivatives in Eq. (3.4.3) are given by its function values at 

the nine nodes according to Eq. (4.2.10). The transformation matrix in Eq. (4.2.10) is 

generated for a node and then the derivatives, Bar/ar, aa,/Bz and apz/az, are evaluated 

through their logarithms as explained in the previous section. The derivatives apt /az 

and agL/Bz  are also evaluated. Mow the transformation matrix is utilieed to form a finite 

difference equation corresponding the original equation (3.4.3) for the node. The equation 

for node ( i , j )  can be written in the form: 

9 
(4.5.1) 

23 



where 

A(i, j )  = f)i+a,i+l (4.5.2) 

and f ( i , j )  is the computed value of the right hand side of equation (3.4.3). The values of 

a and p correspond bo the m as shown in 'hble 1. To simplify expressions, let's drop the 

indices i and j in l3q. (4.5.1) and rewrite 

9 p,s  = f (4.5.3) 
i=1 

The internal nodes are handled with Eq. (4.5.3); however, additional considerations 

must be given to the nodes located at boundaries. The conditions to be satisfied in 

developing a finite difference equation are a) the maintenance of second-order accuracy in 

the approximation of the pressure equation Eq. (3.4.3); b) the incorporation of the supplied 

boundary condition; and c) the assurance of the stability assembled matrix equation. 

The derivative boundary conditions given at the eutectic isotherm, the center, and at 

the wall of the cylinder are of concern. The finite difference expressions for the derivatives 

ap/ar and aP/az can be written 

aP 
ar =1 

and 

(4.5.4) 

(4.5.5) 

respectively, similar to Eq. (4.5.3). These equations also apply to the node (ij). In order 

to incorporate the boundary condition at r = 0, we solve &. (4.4.4) for 4, 

(4.5.6) 
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and when eliminate f'2 by inserting this equation into &. (4.5.3). Thus, 

(4.5.7) 

The derivative boundary conditions ar r = R and at the eutectic isotherm, as shown 

in Fig. 3(b), are incorporated to the finite difference Q. (4.6.3) by following the same 

procedure. When several conditions are to be incorporated, e.g. for the corner points in a 

computational domain, the above procedure is repeated to generate a desired equation. 

Finite difference approximations for all nodea are arranged to form a matrix equation. 

If the appoximations are written in rowfirst order, the equation is 

where 

(4.5.8) 

(4.5.9) 

and 

For a computational domain diicretized with five intends in the r-direction and five inter- 

vals in the 8-direction, the shape of matrix ( A )  would be represented as shown in Fig. 9. 

It was not possible to determine the stability of the matrix equation (4.5.8); however, 

our test runs showed that (A)  satisfies diagonal dominance, a sufficient condition for the 

stability of a matrix equation. 
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The Gauss-Seidel method is used to solve the matrix equation. For the five-point 

difference formula typically used for a rectangular computational domain, the function 

values at node (ij) is updated at each iteration using the values at (i - l,j), (i + l,j), 

(i, j - 1) and (i,j + 1). In addition the generalized finite difference method uses function 

values at four corner nodes; their contributions are considered to be relatively insignificant. 

4.0 Computation of velocitiee. 

After solving the pressure equation, the components of velocity, Vr and V,, are com- 

puted from Eqs. (3.3.4) and (3.3.5), respectively. However, from a numerical point-of-view, 

there is a difficulty in calculating an accurate value of aP/az. Fig. 10 shows a typical plot 

of -aP/az and - ( p ~  - p ~ ~ )  gr in the e-direction. The difference of the two values is quite 

small compared with their values. If the value of -aP/az is slightly overestimated, e.g. 

five percent larger, the dotted line may lie above the solid line, leading to a velocity of 

opposite sign, and multiplication with a large coefficient, Kz/(pgL) in E!q. (3.3.5), greatly 

magnifies the error. In fact this happened when the derivative was estimated from the 

usual second order finite difference formulae. Even the sign of the velocities were reversely 

occasionally. This was tested against an analytical solution available for unidirectional 

solidification. 

To overcome this problem interpolation formulas were developed. A schematic plot of 

!’ along the z-direction, shown in Fig. 10, indicates that special consideration is mandatory 

due to a rapid change of P. Data points represented with the coordinates (21, pi), (z2,p2), 
. . . , (zn, f ” )  may be expressed with a polynomial 

n- 1 
le = CiZi 

r=O 
(4.6.1) 
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where Co, C1, Ca, . . . , Cn-1 are the coefficients which can be readily obtained. Then the 

derivative is given by 

(4.6.2) 

The value of the derivative was estimated with areasonable accuracy from this equation. 

4.7 Quadratic Interpolation. 

A curve crossing three points ( x l , f ~ ) ,  ( x a , f a )  and (23,f3)  can be interpolated by a 

quadratic equation, 

f = axa + bx+ c (4.7.1) 

with the coefficients a, b and c given by 

(4.7.2) 

and 

where 

(4.7.4) 

When the relationship between x and f is given with a table of discrete points, it is neces- 

sary to employ an interpolation to obtain values of the function at a specified coordinate. 

Hence, this interpolation is used to improve the estimation of a function. 

4.8 Eetimation of Volume Fraction Liquid. 
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Eq. (3.4.4) may be written 

= 9  
gL 

a2 
(4.8.1) 

where 

By integrating Ea. (4.8.1) setting the lower bound of the integration to z = ZL, g L  = 1, 

we obtain 

(4.8.3) 

Fig. 11 shows a typical plot of the variation of the integrand along the z-direction. The 

solid dots correspond to the mesh points located along the line of a constant radius. The 

quadratic interpolation discussed in previous subsection had 60 be developed and employed. 

The solid dots are connected through a amooth cuwe following the interpolation using three 

nearest neighboring points, and then integration was performed. The area shown in Fig. 11 

is used to evaluate the integral of Eq. (4.8.3) and to obtain gL. 

4.9 Temperature Calculation. 

The boundary conditions applied to the solution of the energy equation (3.6.8) are 

shown in Fig. 3(b). The eutectic and liquidus isotherms are maintained at TE and To, 

respectively. At the center of the ingot the thermal gradient in the radial direction is 

zero due to axial symmetry. At the wall of the ingot, a proper boundary condition is not 

indicated. For this report, we apply a special treatment to the points along the wall. 

The radial component of the interdendritic velocity, V,-, is zero at the boundary. Thua, 



the energy equation becomes 

(4.9.1) 

Because we are primarily interested in subtle radial gradient, we ignore radial conduction 

terms and keep only those in the e-direction; thus we approximate the behavior along the 

wall with 

a v  an, aT 
az= a Z  aZ tcg-+-- (4.9.2) 

4.10 Macrosegregation Calculation. 

Refer to the plot of C$ versus gs in the z-direction shown in Fig. 12. Solid dots 

correspond to calculated results at mesh points. As gs goes to zero, the dots are more 

sparsely distributed. Estimation of the local average composition after complete solidifica- 

tion requires the estimation of the area in Fig. 12 according to Eq. (3.7.2). Again a smooth 

curve connecting the dots is drawn according to the quadratic interpolation. A numerical 

integration for the area under the curve gives the average concentration of solute in the 

primary phase after solidification is complete. 

4.11 Termination of iteratione. 

It is necessary to predict whether the current solution is sufficiently accurate. Repre- 

sent the calculated P for a point (i,j) at the nfh iteration level with p,$). The stopping 
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criterion employed is 

(4.1 1.1) 

where €2 is the tolerance measured in relative error. The summation is done for all mesh 

points. The residual e&+') computed at the (n+ 1)th iteration corresponds to $,$I. This 

value is used to update f) estimated at the previous iteration, i.e. 

(4.1 1.2) 

When &. (4.11.1) is satisfied, the iterations are stopped. After the first iteration, however, 

the next is done without checking the condition (4.11.1). A maximum number of iteration 

is also specified to prevent from accidental infinite looping of the iterations. 

5 EMPLOYING THE CODE 

The program was written primarily to investigate the effect of a very small deviation 

from horizontal liquidus and eutectic isotherms on the macrosegregation of Pb-Sn alloys 

for solidification rates ranging from cm-s-'. It is absolutely important to use 

adequate data for the density of solid, the density of interdendritic liquid, permeability, 

viscosity, dendrite arm spacing, thermal conductivities of solid and interdendritic liquid, 

phase diagram, and enthalpies of the solid and the interdendritic liquid. Data for the 

Pb-Sn alloys are presented in the APPENDIX. Other binary alloys can be processed by 

replacing thermal property data, and similar geometries of solid/liquid eone, consistent 

with two-dimensional (r,z) cylindrical coordinates, can be processed by modifying the 

grid generation procedure. The program was written in TURBO PASCAL v3.0 (Borland 
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International, CA) to run with a PC-DOS operating system. Graphics routines were 

developed using TURBO GRAPBIX Vl.0 (Borland International, CA). This program can 

be run with IBM PC, XT, AT computers or compatibles with IBM-compatible graphics 

adaptor or a Hercules monochrome graphics card. A dot-matrix printer is necessary to get 

hardcopies of plots displayed on screen. For higher speed computations, installation of the 

8087 (80287 for AT machines) math coprocessor is recommended. 

5.1 Program Options (Menus). 

When execution of this program is requested, a menu is displayed on the screen and 

instructs the operator to make a selection. This menu is reproduced as Fig. 13. A brief 

description of each option is given below. 

0: Concise description of the program is displayed on screen. This can be sent to 

printer by pressing Shift-PrtSc key. 

1: Requests the operator to enter the name of the input and output data filenames. 

Currently PB-SN.DAT is the only file which can be accessed. After execution of 

this option, the name of the files and the message "NO results yet" are displyed 

on the screen [Fig. 14). 

2: The data read from the parameter file is displyed on the screen (Fig. 16). The 

operator can modify any of these parameters or get a hardcopy of the data. The 

definitions of the parameters are given below: 

CO : weight percent Sn. 

R, u, b, ZLO : geometry of the aolid/liquid none (Fig. 5). 

uz : solidification rate, cm - a-1. 
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hzte f : ratio of the adjacent grid spacings in the x-direction. The grid spacings 

can be gradually reduced by setting it to a value less than unity. 

Recommended value ranges from 0.8 to 1.0. 

to1 : tolerance allowed given in terms of relative error. 

maxitr : maximum number of iterations. 

kmodel : permeability model. Several permeability models will be implemented 

in future versions; however, there is currently only one option avail- 

able. 

mmax: number of subintends in the r-direction for the mesh. 

nmax : number of s u b i n t e d  in the z-direction for the mesh. 

ENERGY : Energy equation may be solved (ENERGY=l) or the temperature 

variation along the e-direction is assumed to be linear (ENERGY=O). 

DEBUG : Intermediate results are displayed on the screen or printer if this vari- 

able is not zero. This feature was used to facilitate program debug- 

ging. 

DEVICE : Intermediate results can be displayed on the screen (DEVICE=O) or 

sent to the printer (DEVICE=l). This feature is also used for program 

debugging. 

3: Now, we return to Fig. 13. The data updated by selecting option 2 is overwritten 

to the parameter file. 

4: The operator can switch to other input and output paramete files for the program 

run. This option would be useful when the program is extended to process 
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various binary alloys. 

5: Program is run and intermediate and final results are stored as disk files. 

6: Final results are displayed on the screen. Also hardcopies of these results may 

be obtained. 

7: Exit to the operating system (DOS). 

5.2 Output. 

The results obtained with the parameters displayed on Fig. 15 are shown in Fig. 16. 

The effects of so1idification process parameters on macrosegregation are under analysis. 

Here the intent is to merely acquaint the reader with the mechanics of using the program. 

Fig. l6(a) shows the mesh and the velocity vectors of the interdendritic liquid. The 

center of the ingot (r=O) is to the left, and the wall (r=R) is to the right. Notice that the 

isotherma, Fig. 16(b), are slightly convex so the less dense interdendritic liquid, enriched 

in Sn, flows toward the center. Fig. 16(c) gives the temperature along the center-line and 

along the surface. For this example, it is almost linear, but at greater solidification ve- 

locities the deviation from linearity is more noticeable. The outputs likely to be of most 

interest to the users of this program, are shown in Figs. 16(d) and (e) for the concentration 

of Sn and volume fraction of eutectic, respectively. Consistent with the flow of the inter- 

dendritic liquid, Fig. 16(a), the amount of eutectic and the composition increase from the 

wall to the center. Finally, other characteristics of the mushy zone are given by Figs. 16(f) 

through 16(h). 
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Fig .  3 Eoundary c o n d i t i o n s  g i ven  i n  ( a )  o r i g i i i a l  
and (b) t ransformed coo rd ina te  systems. 
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Fig. 4 Rectangular nicsiies 
( a )  uniform spacings i t i  bo th  directions 
( b )  uniform spacings i t i  the r-ai rection, 

b u t  adjusted nununiform spacings i n  the 
z-cl i recti on. 
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( I + l ,  j.1) 

Fig .  G F i n i t e  d i f f e r e n c e  f o r m u l a t i o n s  f o r  
( a )  an o r thogona l  r e c t a n g u l a r  mesh, and 
( b )  a nonorthogonal  i r r e g u l a r  mesh. 
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Fig.  7 C u r v i l i n e a r  n i n e - p o i n t  mesh i n  
( a )  g l o b a l  r - z  plane, and 
(b) l o c a l  4-13 p lane a t  node i . 
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Fig. 9 The shape o f  matrix A. . : nonzero el emerits. 
x : elements reduced to zero by incorporating 

derivative boundary conditions. 
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Fig .  11 E s t i m a t i o n  of volume f r a c t i o n  T iqu id  by 
i n t e g r a t i o n .  S o l i d  d o t s  co r re spond  t o  
mesh p o i n t s .  
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PU1 t 

I'd0 parameter  d a t a  exists. 

II'4FUT FILEtlr?l*lE : 
OUTF'U'T FILEPIAME : 

E n t e r  your  s e l e c t i o n  : 

Fig .  13 Henu d i s p l a y e d  on screen a t  the  b e g i n n i n g  o f  
program run. 



GI. D i s p l a y  b a c k g r o u n d  i n f o r m a t i o n  
1. Head i n p u t  p a r a m e t e r s  
2. M o d i f y  i n p u t  p a r a m e t e r s  
3 .  S a v e  u p d a t e d  p a r a m e t e r s  
4. G o t o  o t h e r  p a r a m e t e r  f i l e  

6. Plot f i n a l  resul ts  
7. Q u i t  

E: L). F a n  p r o g r a m  

INF'UT FILEbIAME : pb-5.n. dat 
OUTFUT FILEI\IAME : m139 

E n t e r  y o u r  s e l e c t i o n  : 

Fig. 14 Menu d i s p l a y e d  on screen a f t e r  s e l e c t i o n  o f  
menu "l", and i n p u t  and o u t p u t  filenames. 
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1. 
2. 

4. 

6 .  
7. 
8. 
9 .  

10. 
11. 
12. 
13. 
14. 
15. 

- 
L\ . 
c 
4. 

CC3 
R 

b 
Z L  

UZ 
h= r c f  

ma:: 1 t r 
I: mod e 1 

rri m a: : 
nma:: 

ENERGY 
DEBUG 

DEV I CE 

a 

t G 1  

PAF:APlETER FIL-E : p b - s n .  d a t  

C h a n g e d  2 t i m e s .  
E n t e r  .to s t o p  c h a n c ~ i n g ,  
E n t e r  1::. 15 t o  p i - i n t  sc i -pen .  

F i g .  15 D i s p l a y  o f  t h e  d a t a  r e a d  f r o m  p a r a m e t e r  
f i l e  when menu " 2 "  i s  s e l e c t e d .  
can change t h e  i n p u t  p a r a m e t e r s .  

O p e r a t o r  
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Fig. 16 (cont inued . )  
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Fig. 16 (continued.) 
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APPENDIX - DATA FOR PB-SN ALLOY 

Al l  Deneity of Solid. 

P S E  (density of eutectic solid) = 8.366 g/cm3 

ps (average density of solid) = 11.340 - 0.05898 - 0.001273 T 

The density of the solid (lead-rich a phase) is determined by Poirier 181 ua.ag lattice 

parameters reported by Fecht and Perepeeko 191. 

A.2 Density of Liquid. 

PLE (density of eutectic liquid) = 7.928 g/cm3 

P L  = 10.559 - 0.04251 CL 

The density of interdendritic liquid is presented as a function of CL by Poirier [8] based 

upon reported [10,11,12]. 

A.3 Viscosity. 

p = 0.026 poise- (g - 3-l - cm-') 

Thresh and Crawley [13] measured the viscosities of PbSn melts and extrapolated their 

results to the liquidus temperatures. They found that, these viscosites are almost constant; 

thus an average value is used here. 

A.4 Phase Diagram. 

Sufficient, number of points were taken from the liquidus and solidus curves of the 

PbSn equilibrium phase diagram [14] (Fig. Al)  and fitted to polynomials. CL and k are I 

k4 



I . I  

given by, 

CL = 61.656 - 41.496 x - 64.929 X' + 34.872 x3 

and 

k = 0.301 + 0.200 x - 0.443 2' + 0.73 x3 

where 

1; (T - TE)/(TM - TE) 

TE = 183OC . 

TM = 327.5 "C 

and 

CB = 61.9 wt. pct. Sn. 

A.6 Primary Dendrite Arm Spacing. 

dl = 584 Gt0.303 

where dl is in pm, and GL in O C  - crn-l. Mason et al. I151 showed that primary dendrite 

arm apacings of dendrites in Pb-Sn alloys of various compositions. At low solidification 

rates of our interest, the dependency of dl on the solidification rate is small. Their results 

also indicate a weak dependency of dl on alloy composition. The empirical formula is for 

Pb-40 Sn alloy and a solidification rate of cm 8-l; however, the actual dendrite arm 

spacing is expected to be accurate within 10 % . 
A.6 Permeability of interdendritic liquid. 

K = 3.76 x 10-~ 9 2  d,' 



Poirier 14) modelled the flow of the interdendritic liquid with Hagen-Poiseuille law and 

estimated the relationship baaed on available data. 

A.7 Thermal Conductivity. 

The thermal conductivities of pure Pb and of Sn in the liquid and solid states, as 

functions of temperature, are taken from Brandes [16] and extrapolated to the temperature 

range, 183 OC - 327.5 OC as necessary. (See Fig. A2). 

tc8 (Pb) = 0.318 - 1.86 x (T - TE) 

n1 (Pb) = 0.130 + 1.64 x (T - TE) 

IC# (Sn) = 0.606 - 2.99 x (T - TE) 

KI (Sn) = 0.290 + 2.01 x IO-4 (2' - TE) 

The units of these conductivities are in waft - cm-l - OC-'. 

A.8 Enthalpy. 

5 = - 4.788 + 0.13868 T + 0.97811 Cs 
- 1.0332 x lom3 c' + 1.0449 x T Joule/g 

Ht = 63.772 + 0.72996 CL - 7.1156 x 

+ 3.7147 x Ci - 4.7423 x Ci Joule/g 

Poirier and Nandapurkar 1171 evaluated the enthalpies of the dendritic solid and inter- 

dendritic liquid of Pb-Sn alloys and found that they are appreciably dependent on alloy 

composition. These dependencies were expressed in polynomials reproduced here. 
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Fig. A1 The Pb-Sn e q u i l i b r i u m  p h a s e  diagram 1143. 
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F i g .  A2 Thermal conductivities of  Pb and Sn i n  thc solid 
and liquid states [167. 
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